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Outline of Talk
• Overview of GeoClaw


• Description of software package for geophysical flows 


• Adaptive Mesh Refinement


• Selected V&V 


• Modifications for Air-Burst Simulations


• Some analytic results


• Coupling to NASA atmospheric propagation simulations  (model)


• Some numerical results


• Conclusions and Future Work



Overview of GeoClaw

Spin off from ClawPack - Conservation Law Package (LeVeque, 1994)


• high resolution explicit finite volume scheme based on wave 
propagation method 


• Riemann solver based - robust for nonlinear problems


• includes adaptive mesh refinement


• OpenMP based parallelism


• open source software project

GeoClaw specialized for geophysical flows with bathymetry (2004) 
using depth-averaged shallow water equations



Sketch of SWE Derivation

Start with incompressible, divergence-free, irrotational Euler eqs:

ut + uux + wuz + px = 0

wt + uwx + wwz + pz = �g

ux + wz = 0

uz � wx = 0

Boundary conditions:

Long wave length approximation:

is water height h

w(z = 0) = 0

p = 0

ht + uhx = w

h/L << 1

Asymptotics: solution of form
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Sketch of SWE Derivation

Leading term:
�p0

�z
= �g p0(z) = g(h0(
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Next term: uz = wx u0, u1 independent of z
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... O(1/L) terms give: h0t + u0h0x = �h0u0x
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Solve shallow water equations with bathymetry B(x,y,t)

Overview of GeoClaw

Depth averaged, long wavelength approximation to Euler eq.

Reduces to 2D, removes free surface, but lots of numerical issues.

c =
√
ghwave speed 


deep water h � 4km, c � 200 m/sec

shallow water h � 10m, c � 10 m/sec

ht + (hu)x + (hv)y = 0

(hu)t + (hu2 +
1

2
gh2)x + (huv)y = �ghBx

(hv)t + (huv)x + (hv2 +
1

2
gh2)y = �ghBy

B(x,t)



Overview of GeoClaw
• Numerics: 


• Well-balanced schemes (small waves on deep ocean at rest)


• Riemann solver - very robust, handles large jumps in bathymetry  


• Drying/wetting handled automatically:

• GeoClaw handles: 


• latitude/longitude coordinates


• handles multiple overlapping bathymetry (topo) files, with different 
resolutions (uses DEM’s (digital elevation model) on regular grid) 
Earthquake-generated tsunamis via moving topography (dtopo) files 


• moving shoreline:

h = 0 h > 0



Adaptive Mesh Refinement

Patch-based mesh refinement to follow important features

• Adaptive in space and time - bridge 
scales from meters to hundreds of 
kilometers


• Refines automatically to follow waves 
and other features


• Interpolate between patches 
automatically (preserving sea-level)


• Grid generation for patches handled 
automatically



Tohuko Simulation

Computation by David George (USGS)  and Randy LeVeque (UW)

• 5 levels of refinement:  8,4,16, 32   (214 in each direction!)


• Resolution: 160 km on level 1;   10 m on level 5;



Tohuko Simulation



Tohuko Simulation

Wave height at selected DART (Deep Ocean Assessment 
and Reporting of Tsunamis) buoys from NOAA.


LeVeque currently working on comparing velocities.



Overview of GeoClaw

• Applied to tsunamis, flooding, storm surge, landslides, debris flows.


• Approved by NTHMP (National Tsunami Hazard Mitigation Program) for 
hazard mapping in 2011. Set of 9 benchmark problems, analytic, wavetanks, 
and tsunamis.  Results available at www.clawpack.org/geoclaw 

Malpasset dam break 
(David George)

storm surge: Hurricane Ike at landfall 
(Kyle Mandli)

tsunami  (Chile, 2010)



Overview of GeoClaw

zeta (depth of flooding) contours for p = .002 
with prob .002 the flooding is this level

probability contours of flooding  
fix flooding level, ask what the prob. is 

Ref: Probabilistic Tsunami Hazard Assessment (PTHA) for Crescent City, CA.  
by Frank I. Gonzalez, Randall J. LeVeque, Loyce M. Adams, Chris Goldfinger, George R. Priest, and Kelin Wang

meters



• Bolide enters atmosphere, ‘explodes’ in air 
over water.


• Initial shock wave reaches water, followed 
by longer rarefaction (plus more)


• Modify shallow water equations: 
atmospheric pressure gradient is forcing 
function on rhs.

Air-Burst Generated Tsunami Simulations

ht + (hu)x + (hv)y = 0

(hu)t + (hu2 +
1

2
gh2)x + (huv)y = �ghBx(x, y) � hpxair/�water

(hv)t + (huv)x + (hv2 +
1

2
gh2)y = �ghBy(x, y) � hpyair/�water

temperature



Some Analysis

Simplify to 1d without bathymetry:

Look for traveling wave solutions:  

p(x, t) = p(x � st) for constant speed s

Turns pde into ode:    define m = x � st

then �
�x = �

�m
�
�t = (�s) �

�m

ht + (hu)x = 0

(hu)t + (hu2 +
1

2
gh2)x = �h pxair/�water

�shm + (hu)m = 0

�s(hu)m + (hu2 +
1

2
gh2)m =

�hpmair

�water



Some Analysis
Odes can be solved exactly!    Resulting (exact) nonlinear relationship:

Linearized relationship: (s2 − c2)∆h = h0
∆pair
ρwater

s2

2
(1− h2

0

h(m)2
) + c2(1− h(m)

h0
) =

∆pair(m)

ρwater

s = pressure wave speed

c =
�

gh0 = water wave speed

h

h0
= height ratio of wave to sea level

(h ≈ h0 +∆h)

• Effect stronger in deeper water.  (response  ~ height)


• If pressure increases and s < c,  water height decreases (Δh < 0)


• If pressure increases and s > c,  water height positive (Δh > 0)!


• Resonance when s ≈ c



Some Analysis

(s2 − c2)∆h = h0
∆pair
ρwater

using h0 = 4 km, ρwater = 1000 kg



Some Analysis

• What about compressibility and dispersive 
effects?


• Do same analysis for linearized compressible 
Euler equations.

• Results depend of wave number  k = 2π/L

for 4 km ocean, s = 350 m/sec for 4 km ocean, L = 15km, c = 1500 m/sec 



Pressure Coupling Model
Simulations of spherical blast (Aftosmis et al) for  520kt blast  at ~30 km altitude 
used to provide  ground pressure signatures

ht + (hu)x + (hv)y = 0

(hu)t + (hu2 +
1

2
gh2)x + (huv)y = �ghBx(x, y) � hpxair/�water

(hv)t + (huv)x + (hv2 +
1

2
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Pressure Coupling Model
Simulations of spherical blast (Aftosmis et al) for  520kt blast  at ~30 km altitude 
used to provide  ground pressure signatures
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GeoClaw Simulations

• Atlantic bathymetry grid 2 minutes (~ 3.6 km)

• NYC bathymetry grid 3 seconds (~ 80 meters)



GeoClaw Simulations

• Atlantic bathymetry grid 2 minutes (~ 2.6 km)

• NYC bathymetry grid 3 seconds (~ 66 meters)



GeoClaw Simulations (520kt, 29.6 km alt)

• Simulations use tiny time step until pressure wave decays, then time step 
appropriate for water waves


• Resolution on finest grid is 500 meters, or 125 meters to check. Coarse 
cells are 5 km.   Domain side is 25° latitude ~ 2750 km.


• Max amplitude of pressure envelope 6.5% overpressure
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GeoClaw Simulations (520kt)

• zoom of NYC (scale 10 times finer)

• bathymetry contours every 30 m



GeoClaw Simulation  (520kt)

gauge 8 is ~ 10 km from blast



 25MT ground pressure signature with static air burst at 5km altitude

Pressure Coupling Model
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25MT ground pressure signature with static air burst at 5km altitude


pulse is narrower, decays more quickly

Pressure Coupling Model

max. amplitude overpress. ~ 850%



Simulation of 25 MT static spherical charge 

Computation using Cart3D 
by Michael Aftosmis

   Contours of Mach number, buoyancy effects included
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GeoClaw Simulations (25 MT)
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GeoClaw Simulations - 25 MT spherical blast

first 150 seconds: pressure travels faster and decays rapidly, 
wave continues to propagate

A’A

A’A

air pressure water wave

B B’ B B’



GeoClaw Simulations (25 MT)



GeoClaw Simulations (25 MT)

amplitude in center over 10 meters



Conclusions / Future Work

Some Conclusions


• continental shelf provides some protection


• unlike a tsunami, wave not as long duration

Some Thoughts


• need v&v (meteo-tsunamis, early nuclear explosion data, comparison with 
other models)


• still investigating whether shallow water equations are appropriate model? 
(pressure time scale fast, not very long wavelength disturbance, 
compressibility of water may weaken effect, compare with full model)  

• Compare with x-z -t model of full equations vs. shallow water eq. 


